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Abstract

The effects of disorder on the vibration behavior of arrays of micromechanical resonators are
investigated, and the consequences for the characteristics of filters comprised of such arrays are described.
Existing understanding of the phenomenon of localization is applied to demonstrate that such devices are
particularly sensitive to small variations among resonators which are nominally identical, and that, in the
case of high-Q resonators, disorder-induced vibration localization can be a significant impediment to
improving filter performance. Numerical simulations are employed to demonstrate the typical effects of
different levels of disorder. A novel two-dimensional array of resonators is proposed that is less sensitive to
disorder than conventional one-dimensional arrays, improving filter performance without the need for
improved manufacturing tolerances.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Bandpass filters in the RF and IF stages of modern communication systems are typically
implemented as vibrating mechanical tank components, such as crystal and SAW resonators.
These devices dramatically outperform filters implemented using transistor technologies.
However, they are off-chip components, with significant size that is an obstacle to further
see front matter r 2005 Elsevier Ltd. All rights reserved.
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miniaturization of wireless transceivers. One path to overcoming this obstacle is to use microscale
mechanical resonators manufactured directly on-chip [1–8]. Arrays of these resonators, which can
have quality factors over 500,000 [9], can be used to construct filters with low insertion loss in the
passband and excellent shape factor and rejection outside the passband. To date, two-resonator
and three-resonator prototypes of such filters have been demonstrated [5–8]. In the case of one-
dimensional (1-D) arrays, the number of resonators is synonymous with the order of the filter.
Arrays with larger numbers of resonators can thus, in theory, provide sharper rolloffs and higher
stopband rejection. However, successful implementation of such filters is complicated by
increased susceptibility to passband-distorting mismatches between resonators.
A chain of multiple identical mechanical resonators is a spatially periodic system, and the

behavior of such systems has been well understood for decades [10,11]. In frequency passbands,
energy-carrying waves can propagate freely along the chain without attenuation, whereas at
frequencies outside the passbands, wave amplitudes decay exponentially along the chain. In
practice, the periodicity of such a chain is destroyed by mismatches between resonators, caused by
inevitably imperfect manufacturing tolerances. This deviation from periodicity causes partial
reflections of the energy-carrying waves traveling from resonator to resonator, leading to spatial
decay of amplitude even at frequencies within the passbands. The propagation of vibration energy
in such systems is analogous to the diffusion of electrons in disordered lattices, for which the
phenomenon of spatial attenuation due to aperiodicity was first explained by Anderson [12]: it has
since become known as Anderson localization. The first person to apply Anderson’s findings to
mechanical systems was Hodges [13], who showed that the degree of localization depends on the
ratio of the strength of the disorder to the strength of the coupling between subsystems, i.e.,
weakly coupled arrays are more susceptible to localization for a given amount of periodicity-
breaking disorder. The effect of disorder on mechanical vibration has since been studied in a wide
variety of nominally periodic macroscale structures, including multi-span beams and multi-bay
trusses [14–18], periodically ribbed cylinders [19,20], ribbed antennas [21], and cyclically
symmetric structures such as turbomachinery stages [22,23].
Localization due to aperiodicity can pose a significant problem for the use of arrays of

micromechanical resonators as filters. Since the width of the passband of a nominally periodic
resonator array is a function of the coupling between resonators, implementing the narrow bandpass
filters typically required by communication devices necessitates weak coupling, making such arrays
particularly prone to localization when disorder is present. In an array of perfectly identical
resonators, dissipation due to damping is the only source of spatial attenuation of energy in the
passband; the insertion loss of a bandpass filter implemented using such resonators would depend
only on the number of resonators and the resonator quality factor, or Q. In reality, however, the
resonators can never be perfectly identical, and localization effects due to resonator variation can
cause significant passband distortion, degrading the performance of the filter. Moreover, as resonators
with increasingly high Q’s are developed, minimizing losses due to damping, spatial attenuation due to
localization becomes the dominant cause of insertion loss. Castanier and Pierre [24] present an
analysis of the combined effects of dissipation and disorder-induced localization on energy
transmission along a 1-D chain of oscillators, using perturbation methods to find approximate
expressions for the spatial decay rate in the limits of strong and weak inter-oscillator coupling.
The effect of localization on filter performance can be reduced by decreasing the amount of

disorder in the system, either by improving manufacturing tolerances so that the resonators are
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more nearly identical, or by post-fabrication adjustment of the resonators. This ‘‘tuning’’ has been
accomplished by Nguyen et al. [2] (see also Refs. [6–8]), who electrically compensated for
variations by adjusting the resonant frequencies of the individual resonators using DC-bias
voltages applied to each resonator. An effective electrical spring stiffness, which depends on the
bias voltage, modifies the mechanical spring stiffness of each resonator: the applied voltages are
iteratively adjusted until all resonant frequencies are matched and the desired passband, free of
the effects of disorder, is achieved. Although such a technique is well applied to prototypes, the
added cost associated with individually tuning each filter makes it inappropriate for the eventual
mass production of such devices. Given the difficulty in reducing the amount of disorder in an
array, especially in any cost-effective way, there is a strong need to develop designs that have
reduced sensitivity to disorder.
The purpose of this paper is to investigate the effects of disorder on the behavior of

micromechanical resonator arrays, allowing the design of arrays with reduced sensitivity to
disorder. In Section 2, existing understanding of localization is applied to 1-D arrays of microscale
resonators, allowing designers of such structures to determine the degree to which disorder is a
problem for a given design. In Section 3, the results of numerical simulations of disordered 1-D
arrays of single degree of freedom oscillators are shown, providing examples of the effects
described in Section 2. Finally, in Section 4, a two-dimensional (2-D) array is proposed that can
be used to reduce sensitivity to disorder by acting as a 1-D chain with reduced levels of disorder.
2. Spatial attenuation of vibration amplitude in microscale resonator arrays

2.1. Wave propagation in a 1-D array of identical oscillators

Consider a simple model of a chain of identical resonators, in which each resonator is
represented by a single degree of freedom oscillator (see Fig. 1). Each oscillator has the same mass,
m, and nominal stiffness, k0, and adjacent oscillators are coupled by a stiffness kc. If the non-
dimensional coupling is defined as R ¼ kc/k0, and the natural frequency of an individual oscillator
is o0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
k0=m

p
, then the passband of the system will consist of frequencies between o0 and

o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R
p

. This can be shown by considering the equation of motion of a single oscillator,
Fig. 1. Single degree of freedom model of 1-D oscillator chain. Each oscillator has the same mass, m, and nominal

stiffness, k0. Adjacent oscillators are coupled by stiffness kc.
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coupled to its neighbor on either side:

�o2mun þ ðk0 þ 2kcÞun � kcun�1 � kcun þ 1 ¼ 0. (1)

Here, un is the vibration amplitude of oscillator n, and un�1 and unþ1 are the amplitudes of the
neighbors to left and right, respectively.
Following the transfer matrix approach used by Castanier and Pierre [24], this equation can be

rewritten, after dividing through by kc and substituting kc/k0 ¼ R, as

unþ1

un

( )
¼ T

un

un�1

( )
; T ¼

1þ2R�o2=o2
0

R

� �
�1

1 0

" #
. (2)

The eigenvalues of T are simply

l1;2 ¼ 1
2
ðT1;1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2

1;1 � 4
q

Þ. (3)

If T2
1;1o4, which is the case if o=o0 is between 1 and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R
p

, both eigenvalues will be complex
and have magnitude 1. If o=o0 is outside that range, T2

1;1 will be greater than 4, so both eigenvalues
will be real: l1 will be greater than one, and l2 will be its reciprocal. The matrix of eigenvectors
corresponding to l1 and l2 can be used to transform T into a wave transfer matrix, W 0

Lnþ1

Rnþ1

( )
¼W 0

Ln

Rn

( )
; W 0 ¼

l1 0

0 l2

" #
(4)

relating the amplitudes of left- and right-going waves (L and R) on either side of oscillator n. If both
eigenvalues have magnitude 1, waves can undergo a phase shift but do not change amplitude as they
pass the oscillator; however, outside o0oooo0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R
p

, the eigenvalues have magnitude other
than 1, and the matrix W0 determines the attenuation of the waves as they pass the oscillator. Since
a wave’s amplitude is reduced by the same fraction (jl2j, or 1=jl1j) as it crosses each oscillator, the
spatial amplitude decay is exponential, with the rate of exponential decay per oscillator defined as

g ¼ ln jl1j. (5)

The same result can be achieved by rewriting Eq. (1) as

a2r
ð2Þu ¼ ½ðo2m� k0Þ=kc�u (6)

and noting the similarity to the 1-D wave equation, r2u ¼ ðo2=v2Þu. Eq. (6) is nearly identical to the
equation given by Sheng [25] for waves on a discrete lattice, but with the additional effect of each
oscillator’s inherent stiffness, k0. Here, rð2Þ indicates a discrete form of the Laplacian (r2, or q2=qx2

in 1-D) equal to 1=a2ðun�1 þ unþ1 � 2unÞ, and a is the spacing between oscillators. Since a is the
minimum length scale of the system, there cannot be a wave traveling through the chain of
oscillators with wavelength less than 2a: the maximum wavenumber k is thus p/a. Mathematically,
this is expressed by the fact that, unlike the continuous Laplacian, for which any wavenumber k is
an eigenvalue, the eigenvalues of the 1-D discrete Laplacian are given by eðkÞ ¼ 2=a2ð1� cos kaÞ

[25], found by substituting un ¼ expð�iotÞ, un�1 ¼ expð�iot� ikaÞ, and unþ1 ¼ expð�iotþ ikaÞ
into rð2Þ. Wavenumbers greater than p=a are therefore indistinguishable from lower wavenumbers,
and all eigenvalues eðkÞ are between 0 and 4/a2, corresponding to wavenumbers between 0 and p=a.
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Replacing rð2Þu with eðkÞu in Eq. (6) and solving for o2 gives

o2 ¼
k0 þ kca

2eðkÞ

m
¼ o2

0ð1þ 2ð1� cos kaÞRÞ. (7)

The frequencies at which waves propagate through the system are thus between o ¼
ffiffiffiffiffiffiffiffiffiffiffi
k0=m

p
(corresponding to wavenumber k ¼ 0) and o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0 þ 4kcÞ=m

p
(corresponding to wavenumber

p=a), i.e., frequencies between o0 and o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R
p

.
Note that the width of the passband, which is approximately 2Ro0 for small R, depends only on

the nominal oscillator frequency and the amount of coupling. For weakly coupled systems, the
percent bandwidth is thus simply twice the non-dimensional coupling, regardless of the number of
oscillators in the chain. Filters for RF and IF applications typically have bandwidths between a
few tenths of 1% and a few percent of the filter center frequency. In order to use a chain of
resonators to implement such a filter, the coupling ratio R must indeed be small—this can be
accomplished by designing an array in which the coupling stiffness is significantly softer than the
stiffness of the resonators themselves. Although fabrication considerations place a lower limit on
the thickness and width (and thus stiffness) of beams used to mechanical couple adjacent
resonators, the coupling stiffness can also be decreased by attaching the coupling beams to the
resonators far away from the location of maximum vibration amplitude [3,6–8], allowing small R

to be achieved using coupling beam with reasonable dimensions. Note that the ratio of filter center
frequency to filter bandwidth is often referred to as the filter quality factor, Qfilter, and is equal to
1/2R for small R. This should not be confused with the individual resonator quality factor, Q,
which is determined by the amount of damping present in the resonant mode of a single device.

2.2. Spatial decay due to damping

The addition of damping to an array of identical oscillators adds an imaginary term to the
oscillator equation of motion, Eq. (1), proportional to the damping coefficient d (the reciprocal of
the oscillator quality factor, Q). This adds a factor jd=R to the (1,1) term of the displacement
transfer matrix T (where j ¼

ffiffiffiffiffiffiffi
�1
p

). The eigenvalues of T no longer have unit magnitude within
the passband, and thus the spatial decay constant g is non-zero at all frequencies. If the damping d
is small compared to coupling R, the damped spatial decay constant within the passband is shown
by Castanier and Pierre [24] to be

gd �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að4� aÞ
p d

R

� �
, (8)

where the passband position, a, is defined by ðo=o0Þ
2
¼ 1þ aR, so that 0pap4 within the

passband.
Energy dissipation mechanisms in micromechanical resonators have been the subject of much

recent investigation [26–31]. Significant sources of dissipation can include acoustic and viscous
losses (if the oscillator is in a fluid such as air), intrinsic absorption within the material
(phonon–phonon interaction and thermoelastic dissipation), and losses through the attachment of
the resonator to the supporting structure. Typically, high-Q resonators are operated in vacuum,
eliminating acoustic and viscous losses, while intrinsic material loss and attachment loss are small
enough that Q’s on the order of 103–105 [30,32–34], and in some cases over 5,00,000 [9], can be
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achieved. For an application with a narrow bandwidth requirement of 0.1% (Qfilter ¼ 1000, or
RE0.005) and resonator Q of 10,000 (d ¼ 10�4) the spatial decay constant gd is less than 0.1 at
passband center, indicating less than 0.5 dB transmission loss per resonator. Thus, if damping
were the only significant source of energy attenuation across the length of the chain, low-loss
filters could be achieved using chains significantly longer than the existing two- and three-
resonator prototypes.

2.3. Localization due to disorder

Wave amplitudes can also decay in the passband in an undamped system, if the resonators are
not precisely identical. Resonators may have slightly different dimensions, due to manufacturing
tolerances, and may have other variability due to material defects, surface roughness, etc. Here, all
such causes of disorder are modeled as variations in oscillator stiffness. Depending on the
mechanism used to couple adjacent oscillators, the coupling stiffness may also vary throughout
the array; however, such effects are neglected here. If the stiffness kn of oscillator n varies from the
nominal oscillator stiffness, k0, by a fractional amount Dkn (defined as ðkn2k0Þ=k0), then an
additional Dkn=R will be added to the (1,1) term of the displacement transfer matrix, T, for
oscillator n. If the eigenvalues of the nominal T matrix are used to transform the modified T

matrix for oscillator n, the resulting wave transfer matrix, Wn, will have off-diagonal terms. Wn

can be written as

W n ¼
1=tn �ðrn=tnÞ

rn=tn tn � ðr
2
n=tnÞ

" #
, (9)

where tn is a transmission coefficient and rn is a reflection coefficient. Without disorder, the
transmission coefficient, tn, is simply the eigenvalue l2 (the reciprocal of l1), which has magnitude
1 within the passband, and the reflection coefficient, rn, is zero. In the presence of disorder,
however, the transmission and reflection coefficients become

tn ¼
l2
ð1þ bÞ

; rn ¼
�l2b
ð1þ bÞ

, (10)

where b is Dkn=ðRðl1 � l2ÞÞ. As the difference in stiffness between oscillator n and the nominal
oscillator increases, a greater percentage of the energy in an incident wave is reflected rather than
transmitted. As the wave propagates across multiple oscillators, the total transmission and
reflection can be found by calculating the global wave transfer matrix, W, which is the product of
each oscillator’s wave transfer matrix W n. The transmission, tn, at each oscillator depends on the
individual oscillator stiffness, and thus spatial decay of amplitude along the chain is not smooth.
However, in the limit as N !1, the spatial amplitude decay is asymptotically exponential, and
the (1,1) element of the global matrix W can be used to find an average rate of decay per
oscillator:

g ¼ lim
N!1

1

N
ln jWð1;1Þj. (11)

In this case, g can be called a localization factor, and is essentially the reciprocal of the decay
length, x, defined by Sheng [25] for localization in a 1-D array, normalized by the spacing between



ARTICLE IN PRESS

J.A. Judge et al. / Journal of Sound and Vibration 290 (2006) 1119–1140 1125
oscillators. In general, the differences between resonators in any array may include some
systematic variation as well as random, uncontrollable variations; it is the latter that are modeled
here, allowing overall disorder in the system to be characterized by s, the standard deviation of
the variations in stiffness, Dkn. Without disorder, Wð1;1Þ has magnitude 1 within the passband; as
s increases, the magnitude of Wð1;1Þ decreases, and the increased spatial decay of amplitude
reflects greater localization of energy near the beginning of the chain. Note that, if disorder were
modeled as a variation in some other parameter than oscillator stiffness (mass, for example), the
details of the calculation of tn and rn (and thus W) would be slightly different, but the qualitative
effect would be the same.

2.4. Combined effects of disorder and dissipation

Castanier and Pierre [24] present expressions, based on perturbation analysis, for the (average)
exponential decay constant for a system with both damping and disorder, called the damped

localization factor, gmd . For systems in which both the ratio of dissipation to coupling, d=R, and
the ratio of disorder to coupling, s=R, are small, classical perturbation techniques can be used; if
either of these ratios is large, a modified perturbation technique must be used, in which coupling is
considered the disturbance. Since a high-performance filter requires minimal spatial attenuation
across the chain, low levels of both damping and disorder are highly desirable, and thus only the
former case is considered here. Although Castanier and Pierre refer to this as the strong-coupling
approximation, it is valid as long as coupling, R, is strong compared to damping, d, and disorder,
s, i.e., coupling can be quite small as long as damping and disorder are smaller still. Within the
passband, the damped localization factor (based on the strong-coupling approximation) is

gmd �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

að4� aÞ
p d

R

� �
þ

1

2að4� aÞ
s
R

� �2
(12)

which, at the passband center (a ¼ 2), reduces to

gmd � 1=2ðd=RÞ þ 1=8ðs=RÞ2. (13)

Thus, disorder becomes a significant source of spatial decay if ðs=RÞ2 is non-negligible, and the
dominant source of decay if ðs=RÞ2 is large relative to (d/R). Fig. 2 shows the damped localization
factor, gmd , at the passband center, versus normalized disorder, s=R, for various amounts of
damping, based on the above approximation. If the percentage variation among oscillators
approaches or exceeds the coupling (half the percent bandwidth), then the strong-coupling
approximation breaks down, however, by this point, the spatial decay due to disorder is already
too large to be adequate for use in a low-insertion loss filter. The limits of fabrication tolerances
set a lower limit on the percentage bandwidth achievable without significant passband distortion
and insertion loss, regardless of the extent to which dissipation is minimized. Clearly, improving
the Q of microscale resonators is of no benefit for filtering applications unless disorder-induced
localization can also be avoided, either by improved fabrication precision, post-fabrication
‘‘tuning’’ of resonators, or by design of microscale resonator filters that are less sensitive to
disorder than simple 1-D chains.
It is important to note that gmd is an average quantity, which gives an accurate measure of the

decay-per-oscillator only in the limit of large numbers of oscillators. Nevertheless, for smaller
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disorder, for various levels of damping.
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numbers of oscillators, examination of gmd provides insight into the relative effects of damping
and disorder, even though it cannot be used to accurately predict the signal amplitude at the end
of the chain.
3. Simulation of 1-D oscillator chains as filters

The global wave transfer matrix W, and thus the attenuation of a signal traveling through an
oscillator chain, can only be evaluated in a statistical sense, in the limit of large N, unless the
specific variation of each oscillator is known. In general, resonator variations are random, and
have magnitude dictated by manufacturing tolerances. Although examination of the average
spatial attenuation is useful for gaining an understanding of the levels of disorder required to
cause non-negligible effects, the effects themselves are more easily understood by examining the
exact transmission characteristics of specific, randomly disordered cases, using numerical
simulations. In this section, the results of such simulations are presented, demonstrating the
effects of disorder on the transmission spectra of 1-D oscillator chains. Note that the results
shown here are based on simulations of the full dynamics of specific coupled oscillator chains, and
thus do not depend on the strong-coupling approximation made in Eqs. (12) and (13) which
allowed gmd to be evaluated statistically.

3.1. Transmission spectrum of 1-D oscillator chain without disorder

In order to use a 1-D oscillator chain as a filter, the oscillator at one end of the chain is excited,
and the forced response vibration amplitude of the oscillator at the far end of the chain is
measured. For the application of filtering a signal in an electrical circuit, a voltage can be used to
drive the first resonator, and the vibration of the final resonator can be measured as a current, as
shown in Fig. 3. The transmission of the filter can then be defined as the ratio of the power
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Fig. 3. Schematic of oscillator array in series with input and output impedances, RIN and ROUT. The force driving the

first oscillator in the array is proportional to the voltage applied at the array input, while the current generated at the

array output is proportional to the vibration amplitude of the final oscillator in the chain.
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delivered into the load (output) impedance to the power delivered if the filter was replaced by a
short circuit. The frequency spectrum of the transmission reveals the characteristics of the filter, as
shown in Fig. 4. A high-quality filter has very low insertion loss and ripple, so that transmission is
very nearly 1 within the passband, and low shape factor (ideally 1), so that transmission drops
very sharply outside the passband.
As discussed in Section 2.1, the eigenvalues of the 1-D discrete Laplacian, given by

eðkÞ ¼ 2=a2ð1� cos kaÞ, are between 0 and 4/a2, corresponding to wavenumbers between 0 and
p=a (wavelengths at least twice the spacing between oscillators). Since the corresponding
frequencies are given by o2 ¼ o2

0ð1þ eðkÞa2RÞ, any frequency between o0 and o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4R
p

allows
wave propagation along an infinite chain of oscillators. However, for a finite chain with N

oscillators, there are N system resonances: N specific wavenumbers (within the range 0 to p=a) for
which there is a match between the geometry of the wave and the geometry of the chain. These
resonances can be found by assembling the equations of motion for all N oscillators into a matrix
and solving for the system eigenvalues. The specific resonant frequencies, and the nature of the
standing-wave resonant mode shapes, depend on the geometry of the chain as well as its end
conditions. If the oscillator quality factor, Q, is sufficiently high, the frequency spectrum of the
forced response of a finite oscillator array (and thus the transmission spectrum of the resulting
filter) will feature distinct resonant peaks, one for each of the system resonances.
Fig. 5 shows the transmission spectrum for a filter comprised of five identical oscillators with Q

of 10,000 and R ¼ 0:01. Note that the frequency has been normalized as ðo=o0 � 1Þ=2R, so that
the passband is nominally from 0 to 1. The curve is thus independent of oscillator frequency o0 or
coupling R, and applies for any array for which Q ¼ 100/R (or Q ¼ 200Qfilter). The five
sharp peaks correspond to the five resonant frequencies of the coupled system. If this chain of
oscillators were used in a filtering application, the result would be unacceptably high ripple
within the passband. The resonant peaks can be flattened, however, by the proper use of
termination resistors [6–8]. The input and output impedances, shown as RIN and ROUT in Fig. 3,
are matched and adjusted to control the high Q of the system resonant peaks, thereby reducing
passband ripple. These resistors affect each resonant peak by an amount proportional to the
participation of the first and last resonators in the corresponding system mode shape, i.e., peaks
corresponding to modes with little or no end-resonator motion will remain sharp, while peaks
corresponding to modes with significant end-resonator motion will become much broader. Note
that, although the termination resistors affect the overall shape factor of the filter (due to the
broadening of the resonant peaks), their presence does not increase the filter insertion loss since
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Fig. 4. Parameters for filter specification.

Fig. 5. Transmission spectrum of a 1-D chain of five identical high-Q oscillators.
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they are external to the filter. For an array with identical resonators, the inherent dissipation in
each resonator is the only source of loss present in the array but not present in the reference short
circuit.
Fig. 6 shows the effect of increasing inherent oscillator damping (decreasing Q) for a 5-

oscillator chain. As damping increases, the passband does not become distorted, but the
increasing spatial decay of signals propagating across the chain results in greater insertion loss. To
minimize insertion loss, oscillator Q must be large relative to Qfilter (d=R must be small). For a
filter with 2% bandwidth, R ¼ 0.01 (Qfilter ¼ 50), so insertion loss is less than 1 dB when
Q ¼ 2500, and damping effects are negligible for Q ¼ 100,000. As bandwidth is decreased,
however, Qfilter increases, resulting in greater loss unless the oscillator Q is also improved.
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Fig. 6. Transmission spectra of ideal 1-D 5-oscillator chains with various oscillator quality factor Q: Q ¼ 2000Qfilter

(—), Q ¼ 200Qfilter (- -), Q ¼ 50Qfilter (y), Q ¼ 20Qfilter (– � ), and Q ¼ 5Qfilter (-), corresponding to d=R of 0.001, 0.01,

0.04, 0.1, and 0.4, respectively. The inset is a close-up of the passband.
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3.2. Transmission spectra of disordered 1-D oscillator chains

The presence of disorder, like damping, results in spatial decay of signals propagating across the
oscillator chain, but also in distortion of the passband due to changes in the resonant frequencies of
the chain. As shown in Eqs. (12) and (13), the effect of disorder on the damped localization factor
gmd approaches the same level as the effect of dissipation as ðs=RÞ2 approaches ðd=RÞ. Once ðs=RÞ2

is of greater order than ðd=RÞ, increasing oscillator Q no longer decreases insertion loss, since
disorder is the dominant cause of attenuation. Moreover, if ðs=RÞ2 is not negligibly small, gmd can
become large enough that there are significant decreases in transmission within the passband,
causing significant increases in both insertion loss and ripple, and hence degrading the filter
performance. Narrow bandwidth applications require a coupling ratio, R, on the order of a few
percent or even a few tenths of a percent. With current fabrication tolerances, it is not unreasonable
to expect that the variation among resonators is of similar order. The contribution to spatial decay
due to disorder ceases to be small as the ratio of disorder to coupling, s=R, approaches 1.
The results of numerical simulations of three randomly disordered chains of five oscillators are

shown: one with s=R ¼ 0:2, a second with s=R ¼ 1, and a third with s=R ¼ 2. In all cases, losses
due to damping are negligible (d=R ¼ 10�3, or Q ¼ 2000Qfilter). The results are shown in Fig. 7.
For the first case, the transmission spectrum very nearly matches that of an ideal oscillator chain
with no disorder: although greater than the effect of damping, the effect of disorder is still quite
small. If disorder is of the same order as coupling (d=R ¼ 1), its effects become more noticeable.
Eq. (12) is no longer a valid approximation of spatial decay, even in the limit of large N, and
distortion of the filter passband is evident, due to the changes in both the system natural
frequencies and the corresponding mode shapes. The utility of the oscillator chain as a filter
diminishes quickly as disorder is further increased. When s=R ¼ 2, the oscillator natural
frequencies have random deviations on the same order as the width of the passband, and
transmission loss is as high as 13 dB at some frequencies within the passband.
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Fig. 7. Transmission spectra for 1-D 5-oscillator chains with varying levels of disorder. Each oscillator’s stiffness varies

from the nominal value by a random amount, selected from a population with standard deviation s. The ideal case,

s ¼ 0 (y), is shown along with three disordered cases: s ¼ 0:2R (—), s ¼ R (- -), and s ¼ 2R (– � ), where R is the non-

dimensional coupling.

Fig. 8. Transmission loss within the passband as a function of normalized disorder for a 1-D oscillator array.

‘‘Maximum passband loss’’ (—) is the median value over 2000 random cases of the highest transmission loss within the

passband, and ‘‘minimum passband loss’’ (- -) is the median value over 2000 random cases of the lowest transmission

loss within the passband.
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Note that the transmission spectra shown in Fig. 7 are for specific random cases, selected to
illustrate typical results. Fig. 8 shows more general results based on a large number of simulations.
At various levels of normalized disorder, s=R, 2000 randomly disordered cases were simulated,
and the highest and lowest transmission loss within the passband were calculated for each case,
taking into consideration possible shifts in the passband center frequency. The median values of
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these losses are plotted as a function of normalized disorder, demonstrating dramatic passband
losses due to localization when disorder, s, exceeds the coupling ratio, R.
4. Two-dimensional arrays

4.1. Reduction in sensitivity to disorder

As seen above, even small reductions in the amount of disorder can have a significant beneficial
effect, since the coefficient of exponential decay governing spatial attenuation is a function of
ðs=RÞ2. However, the amount of disorder is typically determined by manufacturing tolerances,
thus, disorder cannot be easily reduced without development of new manufacturing techniques
with improved precision. Increasing the coupling between resonators, R, has the same effect as
reducing disorder, yet this cannot be accomplished in a 1-D array without altering the filter
bandwidth. A strongly coupled array is insensitive to disorder, yet narrow bandwidth applications
dictate the use of weakly coupled arrays.
Consider a 2-D array of single-degree-of-freedom oscillators, weakly coupled in one direction,

and strongly coupled in the other, as shown in Fig. 9. Note that both weak and strong coupling is
to the same degree of freedom: this model represents an array in which a single mode of each
resonator is coupled to the same mode in four adjacent resonators. Compared to the mechanical
elements that couple the resonators in the weak direction, those in the strong direction must have
different geometry and/or attachment locations closer to antinodes of the resonators, resulting in
greater coupling stiffness. In an array with no disorder, the equation of motion for an oscillator
with indices n and m, in the vertical and horizontal directions, respectively, is

� o2mun;m þ ðk0 þ 2kweak
c þ 2kstrong

c Þun;m � kweak
c un�1;m � kweak

c unþ1;m

� kstrong
c un;m�1 � kstrong

c un;mþ1 ¼ 0. ð14Þ

By noting that the terms involving coupling stiffnesses kweak
c and kstrong

c can be grouped into a
form resembling the 2-D discrete Laplacian, the similarity to the 2-D wave equation is apparent.
Substituting un;m ¼ expð�iotÞ, un�1;m ¼ expð�iot� ikwawÞ, un;m�1 ¼ expð�iot� iksasÞ, etc.,
where kw and ks are wavenumbers in the vertical (weakly coupled) and horizontal (strongly
coupled) directions, and aw and as are the oscillator spacings in those directions, the passband
frequencies are found to be

o2 ¼ w02ð1þ 2ð1� cos ksasÞRs þ 2ð1� cos kwawÞRwÞ (15)

for the ideal array. Here, the coupling ratios Rw and Rs equal kweak
c =k0 and kstrong

c =k0, respectively,
so that Rs4Rw. As in the 1-D case, wavelengths shorter than twice the oscillator spacing cannot
occur: any state with ksXp=as or kwXp=aw is equivalent to a state with smaller wavenumber.
Eq. (15) reveals the behavior of waves traveling along either of the two array directions: for any
given wavenumber kw in the vertical direction, there is a wide frequency band (with width
governed by Rs) in which energy propagates in the horizontal direction, while for any given
wavenumber ks along the horizontal dimension, there is only a narrow band, defined by Rw, in
which energy propagates vertically.
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Fig. 9. Single degree of freedom model of a 2-D oscillator array. Each oscillator has the same mass, m, and nominal

stiffness, k0. Adjacent oscillators are coupled by stiffness kc
strong in the horizontal direction and kweak

c in the vertical

direction.
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Disorder is again modeled as variations in the stiffness of each oscillator from the nominal
value, k0, and characterized by s, the standard deviation of those variations. The coupling in the
weak direction, Rw, is chosen based on the desired bandwidth, even though this results in a non-
negligible disorder-to-coupling ratio, s=Rw. Meanwhile, the coupling in the other direction is
chosen so that Rs is much greater, high enough that ðs=RsÞ

2 is negligibly small. In this way, waves
can propagate along each row of the array without significant attenuation, across a wide band of
frequencies, but wave propagation along each column of the array is governed by the weaker
coupling, allowing the desired narrow bandwidth.
The advantage of this configuration is that there are many pathways for energy to propagate in

the weakly coupled direction, unlike the single pathway present in the 1-D array. In a 1-D array,
as discussed in Section 2.3, the difference between one oscillator and the next causes a partial
reflection of energy-carrying waves, resulting in spatial attenuation along the chain. In a 2-D
array, each oscillator in a given row transmits energy, through the weak coupling, to its neighbor
in the next row, and again, partial reflections result from the differences between oscillators.
However, energy can also propagate along each row, and the strong coupling between oscillators
in the same row ensures that the disorder within a row has little effect: disorder-induced spatial
attenuation along each row is negligible. Because of this, each row can effectively act as a single
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oscillator, and the total fraction of energy transmitted from one row to the next is the average of
the transmission at each location where the two rows are coupled. If all oscillators in a given row
vibrate with equal amplitude (as is the case if jksj ¼ 0 or p=as), the transmission to the next row is
thus governed by the difference between the average oscillator in the given row and the average

oscillator in the next row. Since the disorder in oscillator stiffnesses is a random variable with
standard deviation s, the average stiffness of any N oscillators also varies randomly, but with
standard deviation s=

ffiffiffiffiffi
N
p

[35]. Thus, the greater the number of oscillators per row, the smaller the
differences between each row’s average stiffness. A 2-D array with Nw oscillators in the weak-
coupling direction and Ns oscillators in the strong-coupling direction can thus act as an effective
1-D array with Nw oscillators and effective disorder seff ¼ s=

ffiffiffiffiffiffi
Ns

p
.

4.2. Resonant modes of a 2-D array and excitation of specific mode groups

Just as the resonant modes of a finite 1-D array are characterized by the number of wavelengths
along the chain length, the modes of a 2-D array can be characterized by the number of
wavelengths in each of the array directions. At resonance, standing-wave shapes will occur in each
direction, and all oscillators in a given row will not necessarily have the same amplitude. In this
more general case, transmission from one row to the next occurs most readily near antinodes of
the standing wave shape in the strongly coupled direction. The total transmission between rows is
thus governed not by a strict average of the stiffnesses of all oscillators in each row, but by a
weighted average taking into account the modal participation of each oscillator. For example, at
modes with standing wavelength in the strongly coupled direction equal to four times to oscillator
spacing ðjksj ¼ p=2asÞ, every even oscillator in the row will be at a node, and the odd oscillators
will all have the same amplitude, albeit with alternating sign. In this case, the transmission
between rows is governed by the difference among rows of the average of all odd oscillators in
each row. Treating the 2-D array as an effective 1-D array, the effective disorder becomes
seff ¼ s=

ffiffiffiffiffiffiffiffiffiffiffi
Ns=2

p
, for Ns even, or seff ¼ s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNs þ 1Þ=2

p
, for Ns odd.

Fig. 10 shows the eigenvalues (the square of the natural frequencies) of a 5� 7 array: five rows
are weakly coupled to each other (Nw ¼ 5), with each row containing seven oscillators strongly
coupled to one another (Ns ¼ 7). The resonances shown are for ‘‘fixed’’ boundary conditions, in
which all exterior oscillators are coupled to rigid supports as well as to their nearest neighbors (for
this boundary condition, resonance occurs for wavenumbers k such that ðN þ 1Þka=p is an
integer). There are seven possible standing waves in the strongly coupled direction, and five in the
weakly coupled direction—the 35 resonances are thus arranged in seven groups of five. The
overall passband of the system, which consists of frequencies o0 to o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4Rs þ 4Rw

p
, contains

all 35 resonances. Within that band are seven sub-passbands that include five resonances each; the
width of these is governed solely by Rw. Within each of these narrow passbands, the five resonant
mode shapes all have the same wavenumber in the strongly coupled direction.
By forcing the oscillators in the first row in such a way as to excite only the modes with a certain

strong-coupling-direction wavenumber, ks, and measuring the vibration of the oscillators in the
final row, the array can be used as a filter in the weak-coupling direction, with a single narrow
passband selected by the wavenumber of the excitation applied to the first strongly coupled row.
For example, resonances in the central passband (in the 5� 7 array case, this is the fourth
passband, consisting of resonances for which k�s ¼ 4) all have wavelength in the strong-coupling
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Fig. 10. Eigenvalues of a 5� 7 2-D array of oscillators, plotted versus k�w and k�s , the normalized wavenumbers in the

weakly and strongly coupled directions (k�w ¼ kwawðNw þ 1Þ=p, and k�s ¼ ksasðNs þ 1Þ=p). All 35 eigenvalues

(represented by K) lie on a surface defined by 1þ 2Rsð1� cos ksasÞ þ 2Rwð1� cos kwawÞ.
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direction equal to four times the oscillator spacing a. The amplitude thus follows a pattern
proportional to ‘‘1, 0,�1, 0, 1y’’ across each row. By exciting every odd oscillator in the first row,
with phases alternating between 01 and 1801, this group of resonances can be selected, and the 2-D
array acts as a filter with passband from o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Rs

p
to o0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Rs þ 4Rw

p
. Thus, the width of the

passband is governed by the weak-coupling ratio, Rw, while its center frequency is governed by the
strong-coupling ratio, Rs, and by the choice of the mode-group excited. Note that, as in the 1-D
case, proper selection of input and output impedances can smooth the ripple in the filter
transmission spectrum caused by the five distinct resonances within the selected passband.
Excitation of a single wavenumber in the strongly coupled direction, resulting in the selection of

a single narrow passband, is possible for an ideal array, with identical oscillators, due to the
orthogonality of the mode shapes. However, the presence of disorder alters the modes of the
system so that modes in other groups are not perfectly orthogonal to the excitation pattern. Since
disorder entails, by definition, small variations among the oscillators, the modes in the desired
group will be most strongly driven, as other modes will still be nearly orthogonal to the excitation.
Fig. 11 compares the results of simulations of an ideal 5� 7 array with those of a 5� 7 array with
disorder. The excitation is on the first row, with every odd oscillator driven, and alternating phase.
For the ideal array, this excitation drives a response in the five resonances for which k�s ¼ 4, but is
orthogonal to all other modes, so a single passband is observed. In the disordered case, however,
the vibration occurs in seven different passbands: a weak response is observed in six extraneous
passbands in addition to the strong response in the desired passband.
As the number of oscillators in the strongly coupled direction is increased, the number of

extraneous passbands increases, and, unless Rs is also increased to widen the overall frequency
band, the passbands will become more closely spaced. Because the resonant frequencies are
related to the cosine of the wavenumbers, the extra passbands are most closely spaced at the
lowest and highest extremes. Exciting the central passband is thus an excellent choice, since it has
the greatest separation in frequency from other, extraneous passbands. In addition, excitation of
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Fig. 11. Frequency spectrum of a 5� 7 2-D array, driven to excite the central passband. The inset is a close-up of the

passband (for the ideal case only) showing the removal of ripple by use of termination resistors. Ideal array (—),

disordered array (- -).
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this passband is relatively straightforward due to the fact that all oscillators that vibrate do so
with the same amplitude.

4.3. Extra damping to suppress extraneous passbands

In addition to isolation in the frequency spectrum and ease of excitation, the choice of the
central mode group for the filter passband presents one further advantage. In the central mode
group, all odd oscillators in a given row are at antinodes of a standing wave in the strongly
coupled direction, and thus vibrate with equal amplitude. Furthermore, all even oscillators are at
nodes of the standing wave, and thus do not vibrate. However, all even oscillators are not at nodes
for the other mode groups, in which the wavenumber in the strongly coupled direction is different.
Adding damping to these even oscillators can thus suppress vibration in the other mode groups.
Although this would not be necessary in an ideal case, in which there is no forcing of modes in any
other groups, it can provide significant benefit in any real case, in which some disorder is present,
and all other mode groups are excited (although at a reduced level). Fig. 12 shows the simulated
frequency spectrum for a 5� 7 array, in which the even numbered oscillators in each row have
additional dissipation added so that damping coefficient d (or 1/Q) for these oscillators is
significantly greater than the weak-coupling ratio Rw. By comparison with Fig. 11, it can be seen
that the extra damping has suppressed any significant transmission in the extraneous passbands,
but left the desired passband virtually unchanged.

4.4. Comparison of 1-D and 2-D arrays with disorder

As discussed in Section 4.1, a 2-D oscillator array, with strong coupling in one direction and
weak coupling in the other, can act as an effective 1-D array, with each strongly coupled row of
oscillators acting as a single effective oscillator with properties that are a weighted average of the
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Fig. 12. Frequency spectrum of a 5� 7 2-D array with extra damping on all oscillators in even columns, to suppress

extraneous passbands. Ideal array (—), disordered array (- -).

J.A. Judge et al. / Journal of Sound and Vibration 290 (2006) 1119–11401136
properties of the oscillators in that row. If the excitation of the array is such that the central mode
group is driven (i.e., standing waves are excited along the strong-coupling direction with
wavelength equal to four times the oscillator spacing), then the weighted average is simply an
average across all odd oscillators. The effective disorder (the standard deviation of the row
averages) is less than the actual disorder (the standard deviation of the stiffnesses of individual
oscillators) by a factor equal to the square-root of the number of odd oscillators in each row,
which is Ns/2 if Ns is even, and (Ns+1)/2 if Ns is odd.
Fig. 13 shows close-ups of the passbands of simulated disordered 2-D arrays, each with five

oscillators in the filter (weakly coupled) direction (Nw ¼ 5), but with varying numbers of
oscillators in the perpendicular (strongly coupled) direction (Ns is 1, 7, 17, or 49). Note that
Fig. 13(a), for which Ns ¼ 1, is actually the result of a 1-D array with five oscillators. In all cases,
the inherent Q of each oscillator is high enough that damping-induced transmission losses (other
than those due to intentionally added damping) can be neglected. In all 2-D cases, extraneous
passbands, which lie outside the frequency range shown in the plots, are suppressed by the
addition of damping to even oscillators, as described in Section 4.4.
For the 1-D case shown in Fig. 13(a), disorder, s, equal to twice the weak-coupling ratio, Rw, is

enough to cause significant distortion of the transmission spectrum. The passband is shifted
somewhat in frequency, and strong ripple is present, with almost 20 dB transmission loss at some
frequencies within the passband. This passband distortion is mitigated in the 2-D cases, Fig.
13(b)–(d): as Ns increases, the effective disorder decreases, so that the passband more closely
resembles that of an ideal filter with no disorder. For Ns ¼ 49, for which the effective stiffness of
each row is an average of the stiffnesses of 25 different oscillators, the effective disorder is one-
fifth the actual disorder, so that seff=Rw � 0:4, and transmission spectrum distortion is
dramatically reduced. Note that all cases shown in Fig. 13 are typical results: each is based on
a single simulation, chosen so that the maximum transmission loss in the passband is near the
median value of many simulations; i.e., half of all randomly disordered simulation cases have less
transmission loss than the case shown, and half have more.
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Fig. 13. Transmission spectra for various array sizes: (a) 5� 1 array, (b) 5� 7 array, (c) 5� 17 array, and (d) 5� 49

array. Ideal array (?), disordered array (—) (with standard deviation s ¼ 2Rw).
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Increasing the number of oscillators in the strong-coupling direction, Ns, provides a benefit
only if spatial decay in the strong-coupling direction remains negligible. Although s=Rs is small
(due to the high value of Rs), this quantity governs the average decay per oscillator. Thus,
although localization does not occur over short distances, as in the weak-coupling direction, it can
still occur in the strong-coupling direction if the length of each row is great enough. This effect is
illustrated in Fig. 14. For a variety of array sizes, and for each of two strong-coupling ratios
(Rs ¼ 15Rw and Rs ¼ 100Rw), the highest transmission loss within the passband was determined
for each of 5000 randomly disordered cases. The median value of this quantity is plotted against
the ‘‘effective disorder’’ in the weak-coupling direction, i.e., the normalized disorder (s=Rw)
divided by the square root of the number of odd oscillators in each row. In all cases, the actual
disorder s is twice the weak-coupling ratio, Rw, thus, the disorder-to-coupling ratio in the strong-
coupling direction is 0.13 and 0.02 for the two cases shown. For both cases, increasing Ns

decreases the passband transmission loss as long as Ns is small. As Ns becomes large, however,
localization in the strong-coupling direction becomes non-negligible, and further increases in Ns

are no longer beneficial. This transition occurs at lower values of Ns for the Rs ¼ 15Rw case than
for the Rs ¼ 100Rw case: for the latter, disorder has a smaller effect on transmission in the strong-
coupling direction, so a larger number of oscillators per row is possible before localization in the
strong-coupling direction becomes problematic.
As stated above, it is assumed here that dissipation-induced losses are small compared to

disorder-induced losses, since it is in these situations that 2-D arrays provide the greatest benefit.
Because the filter acts across the weak-coupling direction, dissipation-induced losses in a 2-D
array are in general comparable to those in a 1-D array with the same value of resonator Q and a
number of resonators equal to the number in the weak-coupling direction. This is true even for
large numbers of resonators in each row (across the strong-coupling direction). However,
dissipation-induced loss can place an upper limit on the useful number of resonators in each row.
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Fig. 14. Transmission loss within the passband as a function of array size for strong-coupling ratio Rs ¼ 15Rw (—) and

Rs ¼ 100Rw (- -). ‘‘Highest Passband Transmission Loss’’ refers to the highest value of transmission loss within the

passband of an individual randomly disordered case: the values plotted are the median values of 5000 cases for each

array size. ‘‘Effective Normalized Disorder’’ is the normalized disorder, s=Rw, divided by the square root of the number

of odd oscillators per row. The number above each datum indicates the number of oscillators in the strong-coupling

direction, Ns (the number of odd oscillators per row, Ns
odd, is thus (Ns+1)/2). For all cases, Nw is 5 and s=Rw ¼ 2.
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In the same way that disorder-induced loss across each row becomes non-negligible when the
number of resonators per row is sufficiently large, dissipation-induced loss can also become
significant, and impede the ability of all oscillators in each row to cooperate as a single effective
oscillator.
One final upper bound on practical values of Ns is imposed by the added complexity of

fabricating arrays with very large numbers of resonators. The practicability of very large arrays,
and thus the value of Ns at which the benefits of improved filter performance are outweighed by
the increased fabrication difficulty, depends greatly on the fabrication technique. Note that,
unlike macroscopic devices, microscale resonators have the advantage that the overall size of the
array remains quite small even for large numbers of resonators, and thus, very large arrays are
potentially feasible.
5. Conclusions

Due to their small size and low power requirements, arrays of micromechanical resonators
show great promise for replacing the crystal and SAW resonators currently used as bandpass
filters in communications devices. However, localization of vibration, due to unintended but
unavoidable differences among resonators, can result in dramatic degradation of their filter
characteristics. In particular, for 1-D arrays, localization is of significant concern when the
amount of disorder approaches or exceeds the amount of inter-resonator coupling. Since the
narrow bandwidth requirements of such devices dictate coupling as low as a tenth of a percent,
even the small disorder due to manufacturing tolerances can result in localization. 2-D arrays,
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strongly coupled in one direction and weakly coupled in the other, offer reduced sensitivity to
variation among resonators, allowing high-order, narrow-bandpass filters to be implemented
without the need for post-manufacture adjustment of individual resonators to compensate for
disorder.
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